UNIT II LOGIC GATES

Gates

- Let's examine the processing of the following six types of gates
 - ► NOT
 - ► AND
 - ► OR
 - ► XOR
 - NAND
 - NOR

Typically, logic diagrams are black and white, and the gates are distinguished only by their shape

NOT Gate

A NOT gate accepts one input value and produces one output value

NOT Gate

- By definition, if the input value for a NOT gate is 0, the output value is 1, and if the input value is 1, the output is 0
- A NOT gate is sometimes referred to as an *inverter* because it inverts the input value

AND Gate

- An AND gate accepts two input signals
- If the two input values for an AND gate are both 1, the output is 1; otherwise, the output is 0

Figure 4.2 Various representations of an AND gate

OR Gate

If the two input values are both 0, the output value is 0; otherwise, the output is 1

Figure 4.3 Various representations of a OR gate

XOR Gate

> XOR, or *exclusive* OR, gate

- > An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise
- Note the difference between the XOR gate and the OR gate; they differ only in one input situation
- When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR Gate

Figure 4.4 Various representations of an XOR gate

NAND and NOR Gates

The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively

Figure 4.5 Various representations of a NAND gate

Figure 4.6 Various representations of a NOR gate

Boolean Theorems (Single-Variable)

- x* 0 =0
- x* 1 =x
- X*X=X
- x*x'=0
- x+0=x
- x+1=1
- X+X=X
- x+x'=1

Boolean theorems (multivariable)

- X Y=YX
- X+(Y+Z)=(X+Y)+Z
 - X(YZ)=(XY)Z
- X(Y+Z)=XY+XZ
- (X')'=X

We can use Boolean identities to simplify the function:
 as follows:

$(X + Y) (X + \overline{Y}) (\overline{X\overline{Z}})$	I
$(X + Y) (X + \overline{Y}) (\overline{X} + Z)$	Γ
$(XX + X\overline{Y} + XY + Y\overline{Y}) (\overline{X} + Z)$	Γ
$((X + Y\overline{Y}) + X(Y + \overline{Y}))(\overline{X} + Z)$	C
$((X + 0) + X(1))(\overline{X} + Z)$	I
$X(\overline{X} + Z)$	I
$x\overline{x} + xz$	Γ
0 + XZ	I
XZ	I

Idempotent Law (Rewriting) DeMorgan's Law Distributive Law Commutative & Distributive Laws Inverse Law Idempotent Law Distributive Law Inverse Law Idempotent Law

Gates with More Inputs

- Gates can be designed to accept three or more input values
- A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Figure 4.7 Various representations of a three-input AND gate

Prove the following identities using truth table Perfect Induction Method

 $(\mathbf{X} + \mathbf{Y}) \ (\mathbf{X} + \mathbf{Z}) = \mathbf{X} + \mathbf{Y}\mathbf{Z}$

x	Y	Z	X+Y	X+Z	YZ	(X+Y)(X+Z)	X+YZ
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	ſ	ĺ	1	1	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1
	$\mathbf{R.H.S.} = \mathbf{L}\mathbf{\dot{A}}\mathbf{H.S.}$						

$\mathbf{X} + \overline{\mathbf{X}} \mathbf{Y} = \mathbf{X} + \mathbf{Y}$

 $X.(\overline{X} + Y) = X \cdot Y$

De Morgan's Theorems:

(i)
$$\overline{\mathbf{X} + \mathbf{Y}} = \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$$

(ii) $\overline{\mathbf{X} \cdot \mathbf{Y}} = \overline{\mathbf{X}} + \overline{\mathbf{Y}}$

Combinational Circuits

Α	В	С	D	E	X
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

 Because there are three inputs to this circuit, eight rows are required to describe all possible input combinations

This same circuit using Boolean algebra: (AB + AC) Now let's go the other way; let's take a Boolean expression and draw

• Consider the following Boolean expression: A(B + C)

A	В	С	B + C	A(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- Now compare the final result column in this truth table to the truth table for the previous example
 - They are identical

NAND as NOT

NAND as OR

NAND as AND

NOR as OR

Realization of Logic Gates Using Universal Gates F = AB + CD + E

Logic representation of F:

F = AB + CD + E

NAND implementation

NOR implementation

22

Standard Forms of Boolean Expressions

 All Boolean expressions, regardless of their form, can be converted into either of two standard forms:

- The sum-of-products (SOP) form
- The product-of-sums (POS) form

Sum-of-Products (SOP)

Canonical Forms-Minterms and Maxterms

X	у	Z	minterm	de sign ation	maxterm	designation
0	0	0	хуг	\mathbf{m}_0	x+y+z	${ m M}_0$
0	0	1	xyz	\mathbf{m}_1	x+y+z	M_1
0	1	0	x y z	\mathbf{m}_2	x+y+z	M_2
0	1	1	x y z	\mathbf{m}_3	x+y+z	M_3
1	0	0	x y z	m_4	x+y+z	M_4
1	0	1	x y z	$\mathbf{m}_{\mathfrak{s}}$	x+y+z	${ m M}_{ m S}$
1	1	0	x y z	${ m m_6}$	$\overline{x+y+z}$	M_6
1	1	1	хуг	\mathbf{m}_7	$\overline{x+y+z}$	M_7
			(AND terms)		(OR terms)	

The Sum-of-Products (SOP) Form

- An SOP expression

 → when two or
 more product terms
 are summed by
 Boolean addition.
 - Examples:

AB + ABC $ABC + CDE + \overline{B}C\overline{D}$ $\overline{A}B + \overline{A}B\overline{C} + AC$ - Also: $A + \overline{A}\overline{B}C + BC\overline{D}$

Implementation of an SOP

X=AB+BCD+AC

 AND/OR implementation

NAND/NAND
 implementation

Product-of-Sums (POS)

The Product-of-Sums (POS) Form

- When two or more sum terms are multiplied, the result expression is a product-of-sums (POS):
 - Examples:

 $(\overline{A} + B)(A + \overline{B} + C)$ $(\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D)$ $(A + B)(A + \overline{B} + C)(\overline{A} + C)$

- Also: $\overline{A}(\overline{A} + \overline{B} + C)(B + C + \overline{D})$

Implementation of a POS

X=(A+B)(B+C+D)(A+C)

OR/AND implementation

The Standard POS Form

 A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.

- **Example** $(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + \overline{B} + C + D)(A + B + \overline{C} + D)$

- Standard POS expressions are important in:
 - Constructing truth tables
 - The Karnaugh map simplification method

Converting SOP Expressions to Truth Table Format (example)

 Develop a truth table for the standard SOP expression

 $\overline{A}\overline{B}C + A\overline{B}\overline{C} + ABC$

Ir	nput	IS	Output	Product
А	В	C	Х	Term
0	0	0	0	
0	0	1	1	$\overline{A}\overline{B}C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A\overline{B}\overline{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Converting POS Expressions to Truth Table Format (example)

 Develop a truth table for the standard SOP expression

 $(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})$ $(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$

I	nput	LS	Output	Product
А	В	С	Х	Term
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A + \overline{B} + C)$
0	1	1	0	$(A+\overline{B}+\overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A}+B+\overline{C})$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	

The Karnaugh Map

The 2 Variable K-Map

AB	B 0	B 1
⊼ 0	Ā.B	Ā.B
A 1	A.B	A.B

B. POS: -

A	В 0	B 1
A 0	A+B	A+₿
Ā 1	Ā+B	Ā+₿

4– 35

The 3 Variable K-Map

There are 8 cells as shown:

The 4-Variable K-Map

CD AB	00	01	11	10
00	$\overline{A}\overline{B}\overline{C}\overline{D}$	$\overline{A}\overline{B}\overline{C}D$	$\overline{A}\overline{B}CD$	$\overline{A}\overline{B}C\overline{D}$
01	$\overline{A}B\overline{C}\overline{D}$	ĀBĒD	$\overline{A}BCD$	$\overline{A}BC\overline{D}$
11	$AB\overline{C}\overline{D}$	ABCD	ABCD	$ABC\overline{D}$
10	$A\overline{B}\overline{C}\overline{D}$	$A\overline{B}\overline{C}D$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$

-

Mapping a Nonstandard SOP Expression

- Map the following SOP expressions on Kmaps:
 - $\overline{A} + A\overline{B} + AB\overline{C}$

$\overline{B}\overline{C} + A\overline{B} + AB\overline{C} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$

K-Map Simplification of SOP Expressions

- After an SOP expression has been mapped, we can do the process of minimization:
 - Grouping the 1s
 - Determining the minimum SOP expression from the map

Grouping the 1s (rules)

- 1. A group must contain either 1,2,4,8,or 16 cells (depending on number of variables in the expression)
- 2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group do not have to be adjacent to each other.
- 3. Always include the largest possible number of 1s in a group in accordance with rule 1.
- 4. Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include noncommon 1s.

4– 43

Determining the Minimum SOP Expression from the Map (exercises)

Practicing K-Map (SOP)

 $A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$

 $\overline{B} + \overline{A}C$

$\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + AB\overline{C}\overline{D} + \overline{A}\overline{B}CD + A\overline{B}CD + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + A\overline{B}C\overline{D}$

4– 49

"Don't Care" Conditions

- Sometimes a situation arises in which some input variable combinations are not allowed, i.e. BCD code:
 - There are six invalid combinations: 1010, 1011, 1100, 1101, 1110, and 1111.
- Since these unallowed states will never occur in an application involving the BCD code → they can be treated as "don't care" terms with respect to their effect on the output.
- The "don't care" terms can be used to advantage on the K-map.

"Don't Care" Conditions

	O/P			
A	в	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	x
1	0	1	1	x
1	1	0	0	x
1	1	0	1	x
1	1	1	0	x
1	1	1	1	x

K-Map POS Minimization

 The approaches are much the same (as SOP) except that with POS expression, 0s representing the standard sum terms are placed on the K-map instead of 1s.

 $(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$

Shorthand: \sum and \prod

- f₁(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m₁, m₂, m₄, and m₆.
- f₁(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M₀, M₃, M₅, and M₇.
- Since $m_j = M_j$ ' for any *j*, $\sum m(1,2,4,6) = \prod M(0,3,5,7) = f_1(a,b,c)$

Conversion Between Canonical Forms

- Replace ∑ with ☐ (or vice versa) and replace those j's that appeared in the original form with those that do not.
- Example:
 - $f_1(a,b,c) = a'b'c + a'bc' + ab'c' + abc'$
 - $= m_1 + m_2 + m_4 + m_6$
 - = \(1,2,4,6)
 - = (0,3,5,7)
 - = (a+b+c)•(a+b'+c')•(a'+b+c')•(a'+b'+c')

More Examples

• $f_1(x, y, z) = \sum m(2,3,5,7)$ • $f_1(x, y, z) = x^2y + xz$

• $f_2(x, y, z) = \sum m (0, 1, 2, 3, 6)$ • $f_2(x, y, z) = x^2 + yz^2$

00

O

1

01

11

10

1

Example

- Simplify the following Boolean function $(A,B,C,D) = \sum m(0,1,2,4,5,7,8,9,10,12,13).$
- First put the function g() into the map, and then group as many 1s as possible.

 $g(A,B,C,D) = c'+b'd'+a'bd_{4-}$

Implement the circuit for the for given minterm(SOP) function (NAND)

► F=ABC+A'BC+ABC'

Implement the circuit for the given function

Implement the circuit for the given function

▶ f(A,B,C) = (A+B+C)(A'+B+C)(A+B+C')

Implement the circuit for the given function

